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In recent years, 2D NMR has proven its efficiency in solving the conformation of 
biological macromolecules in solution {I). So far, most structud NMR studies of 
biological macromolecules rely on qualitative interpretation of 2D NOESY spectm 
Quantitative analysis of 2D NOE cross-peak intensities requires the use of very short 
NOE mixing times and the NOESY spectra obtained at these shorter mixing times 
are often phgud by serious baseline distortions that are associated with the very 
high intensity of the diagonal peaks. Consequently, at these short mixing times, the 
2tccuracy of NOE crosspeak integration is often determined by the extent of baseline 
distortion rather than by the true Signal-to-noise ratio of the 2D spectrum. If the 
baseline distortion is linear across the spectrum, correction in the fcequency-dornain 
2D spectrum is straightforward. Often, however, there is also a basdine curvature, 
which is much harder to correct in the frequency-domain 2D spectrum because the 
correction procedure must distinguish signals and noise in defining the baseline posi- 
tion. In this Communication, we describe an alternative and efficient time-domain 
method for improving the baseline features of 2D spectra. 

Serious baseline offset can result from the erroneous implementation of the Fourier 
transformation algorithm, when the first data point is scaled incorrectly (2). Nonlin- 
ear baseline distortion occurs in F T  spectra of timsdomain data that have been sam- 
pled in a ptumump.iex mode if the required zero-order phase correction is not a muIti- 
ple of 90' (3). In this case, the problem can be solved by correctly setting up the 
experiment by adjustment of the receiver phase relative to the transmitter RF phase 
(3). The present Communication concentrates on two remaining and closely interre- 
lated sources of distortion that will be referred to as the first datu point(s) problem 
and the delayed acquisition problem. In the first case, severaI points are sampled at 
the mrrect time, but are. altered (usually underestimated) due to the time response 
of the audiofrequency bandpass fiIter (4). m n g  et al. (2) have proposed to use an 
empirically determined scaling factor for the first data point to correct for this mor. 
However, if the required ScaIing factor is much larger than one, amplification of this 
typicany poorly determined first data point may result in an increase in noise in the 
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tl dimension. The delayed aquisition problem constitutes a more difficult source of 
baseline distortion. Finite pulse width or selective excitation may prevent a start of 
the acquisition at time t = 0, leading to a shift of the sampling frame and thus to a 
frequencydependent phax mor after FT. The use of frequencydependent phase 
correcfims results invariably in a nonlinear distortion of the baseline (5). 

The physical origin of any frequency-dornain baseline distortion lies in the first 
few data points. Therefore, timsdomain co~~ections afF&ng only a few data points 
should be more suitable than frequency-domain baseline corrections (6, 7). Here, we 
show that linear prediction (LF) techniques can be used efficiently for restoring these 
missing (or corrupted) points, yielding 2D spectra with excellent baseline properties. 

The aim is to compute the first points of the timedomain signal from the correctly 
sampled data points, acquired at later times without distortion. PolynomiaI extmpo- 
lation, whatever the chosen order is, is poorly suited for this purpose; the result relies 
mainly on the optimization algorithm used and polynomial fitting of a sum of 
damped sinusoids is likely to be error prone if the extrapolation extends the signal by 
more than a cycle of the highest frequency component. A model-free extrapolation 
of the tjme-domain data can be obtained using the LP technique. In recent years, 
maximum entropy (8-10) and LF techniques (11-14) have been intmducd in NMR 
for the purpose of improving sensitivity and/or resolution, but the present appkation 
is quite different. 

The success of linear prediction in computing spectral parameters has partially 
obscured the etymological origin of its name. Its most straightforward use is to predict 
the future of a time series from the record of its past or vice versa. Consider, for 
example, a signal consisting of k exponentially damped sinusoids sampled as real 
data, ynr at regular intervals. According to the LP model, each data point can be 
expressed as a linear combination of the 2k following points, 
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2k 

Y n  = r: d$n+,, [ l l  
i= I 

where. the LP coefficients, d!, must be determind from the existing points. In the 
basehe problem, mentioned above, one or several points at the beginning of the FID 
itre missing or aItered and they will be reconsmctd from the correctly sampled data 
points acquired at latter times using Q. [ 11. 

Linear prediction is especially successful at extrapolating signds which are smooth 
and oscillatory. The LP extrapolation of a few data points requires orders of magni- 
tude less computation than the extensive derivation of the spectral parameters, as 
achieved in conventional use of LP. Because the extrapolation extends the timedo- 
main data by only a very small fraction of its total duration, the accuracy require- 
ments are not vew stringent in this appfication, permitting the use of the fast Burg 
algorithm (15, 161, instead of the classical singular vdue decomposition method 
(LPSVD) ( I  7). 

The method developed by Burg (16) for autoregressive power spectral density =ti- 
mation yields the LP coefficients. This recursive algorithm computes theporder pre- 
diction coefficients from those obtained previously for ( p  - 1) order using the so- 
d l e d  Levinsun recursion formuh (18). At each step of the iteration a single new 
term, d,, called the reflection coefficient, is derived from the previous backward and 
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forward linear prediction errors. The whole iteration works exceedingly fast without 
assuming anything about the availability or nonavailability of data outside those 
which have been measured (8). The aim of the Burg dgorithm is only to choose, 
at each stage, a new reflection coefficient which minimizes the noise variance and 
consequently the prediction error. A detailed description of this algorithm may be 
found in Refs. (15, 18). 

For reliable extrapolation, LP algoritithms require the use of a number of time 
domain data points that is larger than the number of frequency components p m n t  
in the spectrum with a &nificant amplitude. This number can be several hundred or 
more in a trplcal protein 2D data set. To avoid lengthy calcdations needed for such 
large numbers of coefficients, an alternative processing strategy is used, defined in t h e  
flowchart of Fig. 1. The accuracy of the LP extrapolation in a given dimension (say 
t ,  ) is likely to be higher for the stme computing payload if the data are previously 
transformed with respect to the orthogonal. dimension (Iz), because fewer resonances 
contribute then IQ the tl interferogram. In fact, for NOESY spectra recorded with 
short mixing times, the signal often has only a single major component (the diagonal). 
Extrapolation of the t1 timedomain signal is strightforward, and Fourier transfor- 

I Fourier transformation IF2 1 1 
c=l transposi tjon 

I LPextrapolation of the first points fF1 1 I 

apodization IF1 1 

Fourier transformation IF, 1 

phase correction IF, 1 *---- transposition 

1 
inverse Fourier transformation IF2 3 

1 LP extrapoIation of ttw first points IF* I I 

Fourier transformation IF2 1 

phase correction IF2 1 

FIG. 1. Flowchart ofthe algorithm used for correcting the first data points using linear prediction extrap 
lation. In our work, the standard steps such as apodization, FT, phase correction, and trans*tioa were 
performed using commercially available software (New Methods Research, Inc., Syracuse, New York). 
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mation gives Fl slices free of basehe distortion. FT is a reversible algorithm and tz 
timedomain data can be recoverad by means of an inverse IT. Because the f‘! FT 
has taken place already, onIy few frequency components are present in the recovered 
12 slices, and LP extrapohtion of their fnst data points i s  straightforward. 

Instabilities occur when the characteristic polynomial 
2k 

P - z d d , . P - i = O  t21 
i= 1 

bas at least one of its 2k complex roots far outside the unit circle defined by I z 1 = 1. 
Note that these roots are connected to the spectral characteristics (frequencies and 
decays) of the k damped sinusoids. The instability problem obviously becomes more 
severe if the linear prediction is extended further. In practice, however, only one or 
two pairs of data points are altered by the time response ofthe filter (first data puint(s) 
problem) and experimental constraints rarely delay the tl or t2 acquisition by more 
than a few dwell time. For such short extrapolations, instabilities do not become a 
problem in signal-containing data sets. However, even in 2D spectra of large biornole 
cdes, some spedraI regions do not cuntain any Signal and thus LP applied to these 
noisy, but signalless, data may Iead to erratic results, reflected in large values of I z 1 . 
A simple but efficient procedure to prevent this first solves the polpornid in [Z], and 
then reff ects roots with a magnitude Earget than a b u t  1.3, so that they fall b i d e  the 
unit circle, ie . ,  zj becomes I@,, and these “massaged” LP coefficients are used for 
the reconstruction (15). 

The LP extrapolation can be used successfully in both F! and Fz dimensions, pro- 
vided that the data have been suitably sampled, so that a data point at t, = 0 (tz = 0) 
mn be estimated. In contrast to polynomiaI extrapolation, LP can predict the time- 
domain signal ody at discrete times, separated by an integral number of dwell times 
(A, or A2). Computing a point at tl = 0 or t2 = 0 thus requim sampling the first point 
at t l  = HA, (or t2 = nA2); if, for instrumental reasons, the data point at t, = 0 or tz = 0 
cannot be obtained, the first data point should be taken at a value that is the lowest 
integral multiple of the dwell time, In the tz dimension, the signal is delayed by the 
time response of the audiofilter and sampling at tz = 0 (the time when the phase of 
transverse magnetization components is independent of their offset) is often possible. 
If sampling is SW at this time, no frequencydependent phase correction will be 
necessary in the F2 dimension. In the Fl dimension, there are no audiofilters and 
sampling a point at tl = 0 would require infinitely short pulses. 

Figure 2 shows the comparison of two NOESY spectra recorded on the smalI cyclic 
peptide surfactin (19) from Bacilhv subtitis. This example illustrates the difficulties 
encountered in NOESY spectra with weak cross peaks. For a fair comparison of the 
best achievable resdts with and without LF extrapolation, the spectra originate from 
two separate data sets recorded under identical conditions except for the initial tl 
increment (see below). In both experiments, the dehy before the start of t2 data acqui- 
sition has been carefully adjusted such that no linearly frequency-dependent phase 
correction of the F2 dam is needed. In contrast, a linear phase correction in Fl is 
needed in the regular uncorrected NOESY spectrum because of the finite duration 
o f  the 90” pulses flanking the tl period. It cafl be calculated that, to a good approxima- 
tion, for offsets that are smaller than the strength of the RF field, the lirst 90’ pulse 
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FIG. 2. Comparison ofthe unco& and corrected phamsensitive 500  MHz NOESY spedra{200 rns 
mixing) recorded on surfactin in dimethyl suIfoxide at 27T. Surfactin is a cyclic peptide wi-th the following 
sequenee (I 9): 

CH3(CH2),o--CEI-CHl - CO- L-G~u-L-Ixu-wL~u 

0 - ~LRu-DL~U-L-ASP-L-V~ 
I I 

Spectra result from 2 X 256 X 1024 data matrices recorded on an NT-5aO spectrometer. After zem-tilling, 
the Gtal resolution is 4.6 Hz IF,) and 9.2 Hz ( FI ). Only positive levels are plotted Spectra A and B rasult 
from two identical experiments except for the initial i l  increment (see text). One point in the FI dimension 
and two points in the F2 dimension were estimated by LP extrapolation in the corrected spectrum (a). LP 
extrapohtion in both dimensions required about 8 min on a Sun 3/110. For both data sets, 6O'-skiRed 
Sine-beIl functions were applid before FT and in both dirnensionq the first data point was divided by a 
factor of 2 Mor to FT. A linear phase correction of 53' was appIied in FI for the uncorrected spectrum (A) 
but no such c o d o n  was needed for spxtrurn B. Arrows mark the positions of cross sections, shown in 
Fig 3. 

may be replaced by a S pulse, followed by a delay 2~,./a, where 790" is the duration 
of the 90" pulse (20, 21). Similarly, the second 90" pulse may be replaced by a 6 
pulse preceded by ~ T ~ / T .  Effectively, the first tI interval of a 2D NOESY experiment 
corresponding to a time, T, is then given by 

whew tI  (0) is the initial (programmed) value of the variable evolution period. For 

data set, tl (0) is adjusted such that T = A 1 ,  in order to be able t~ reconstruct with LP 
a data point at t l  = 0 (t ,  (0) = AI - 4~~~~/7). In both dimensions, the real and imagi- 
nary parts of the compkx signal were restor4 independently using t h e  following 30 
points. In F,  , one missing pair was computed ( 10 poles were estimated by the Burg 
method); in F,, two altered pairs were reconstructed ( I  5 estimated poles). As ex- 
pected, no linear phase correction in Fl was needed for the spectrum of Fig. 2B. 

I the regular NOESY spectrum, tl (0) is set to its minimum value ( I  ps). For the second 
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FIG. 3. Fl and Fl cross sedons of fig. 2A (A, B) and Fig. 2B (C, D), taken at the diagonal Mtion of L- 
Leu’ NH. The zero level is indicated by broken lines. The negative offset and the small curvature (not 
visible at h e  vertical s a t e  shown) in B originate from the distorted values of the first two cornpIex t2 data 
poinis, amed by the time response of the filtw, the curvature in A is caused by the linear phase correction 
in Fl associated with the delayed acquisition. The large artifacts near 1.5 ppm in A and B result from 
baseline distortions on the d o n s  that cany the intense methyl signals. In contrast to spectra A and B, 
the F, and F2 sections (C and D) ofthe corrected 2D spxtrurn show nmly  identical artifact-free profiles. 

Both spectra shown in Fig. 2 are plotted with identical positive contour levels. The: 
lowest is drawn at approximately 1.5 times the thermal noise level. Many of the NOE 
cross peaks not visible in Fig. 2A are clearly visible on both sides of the diagonal in 
Fig. 2B. The difference between the 2D spectra can be seen more clearly in Fig. 3, 
which compares Fj and F2 cross sections taken at the positions indicated by arrows 
in Fig. 2. The regular F1 cross section (Fig. 3A) shows a curvature ofthe baseline due 
to the first-order phase correction (53” across the spectrum); the distortion of the F2 
cross section (Fig. 3B) consists mainly of a vertical offset related to the underdma- 
tion of the first data point. The artifacts in these spectra near 1.5 ppm originate from 
baseLine distortion in the orthogonal dimension amplified by the large magnitude of 
the corresponding &agonal. Mer the LP reconstruction of the first data points, both 
the F, curvature and the F2 offset have been removed completely. 

These spectra provide evidence of the power of linear prediction for the suppression 
(before F T )  of artifacts related to the early beginning of the 2D timedomain data. 
This permitts the development of improved 2D and 3D phasesensitive NMR experi- 
ments because the constraint of sampling at 6 ,  = 0 and t2 = 0 is now removed. AppE- 
cations related to solvent suppression and 2D and 3D schemes that utilize selective 
excitation are currently under investigation. 
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